一覧に戻る

タイトル
  • en Random Forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data
作成者
    • en Sonobe, Rei
    • en Kobayashi, Nobuyuki
    • en Shimamura, Hideki
アクセス権 open access
主題
  • Other en crop
  • Other en gamma nought
  • Other en multi-temporal classification approach
  • Other en TerraSAR-X
  • NDC 519
内容注記
  • Abstract en The classification maps are required for the management and the estimation of agricultural disaster compensation; however, those techniques have yet to be established. Some supervised learning models may allow accurate classification. In this study, the Random Forest (RF) classifier and the classification and regression tree (CART) were applied to evaluate the potential of multi-temporal TerraSAR-X dualpolarimetric data, on the StripMap mode, for the classification of crop type. Furthermore, comparisons of the two algorithms and polarizations were carried out. In the study area, beans, beet, grasslands, maize, potato and winter wheat were cultivated, and these crop types were classified using the data set acquired in 2009. The classification results of RF were superior to those of CART, and the overall accuracies were 0.91–0.93.
出版者 en Taylor&Francis
日付
    Issued2014-02
言語
  • eng
資源タイプ journal article
出版タイプ AM
資源識別子 HDL http://hdl.handle.net/2115/57984
関連
  • isVersionOf DOI https://doi.org/10.1080/2150704X.2014.889863
収録誌情報
    • PISSN 2150-704X
    • EISSN 2150-7058
      • en Remote Sensing Letters
      • 5 2 開始ページ157 終了ページ164
ファイル
コンテンツ更新日時 2023-07-26