一覧に戻る

タイトル
  • On loops in the hyperbolic locus of the complex Henon map and their monodromies
作成者

Arai, Zin

アクセス権metadata only access
主題
  • Other Henon map
  • Other Monodromy
  • Other Symbolic dynamics
  • Other Pruning front
  • NDC 400
内容注記
Other
  • We prove John Hubbard's conjecture on the topological complexity of the hyperbolic horseshoe locus of the complex Henon map. In fact, we show that there exist several non-trivial loops in the locus which generate infinitely many mutually different monodromies. Furthermore, we prove that the dynamics of the real Henon map is completely determined by the monodromy of the complex Henon map, providing the parameter of the map is contained in the hyperbolic horseshoe locus.
出版者Elsevier
日付 Issued 2016-11-02
言語eng
資源タイプjournal article
資源識別子 URI http://hdl.handle.net/2115/71791
関連
  • isIdenticalTo DOI https://doi.org/10.1016/j.physd.2016.02.006
収録誌情報
    • ISSN 0167-2789
    • Physica. D, Nonlinear phenomena
    334, 133-140
コンテンツ更新日時2019-10-17T02:28:00Z