Back

Title
  • en Evolution of the north-polar cap of Mars : a modelling study
Creator
    • en Mahajan, Rupali A.
    • en Segschneider, Joachim
    • en Grieger, Björn
Accessrights open access
Subject
  • Other en Mars
  • Other en Ice
  • Other en North-polar cap
  • Other en Polar layered deposits
  • Other en Ice flow
  • Other en Obliquity cycle
  • NDC 445
Description
  • Abstract en Celestial-mechanical computations show that, even stronger than for Earth, Mars is subject to Milanković cycles, that is, quasi-periodic variations of the orbital parameters obliquity, eccentricity and precession. Consequently, solar insolation varies on time-scales of 104–105 years. It has long been supposed that this entails climatic cycles like the terrestrial glacialinterglacial cycles. This hypothesis is supported by the light-dark layered deposits of the north- and south-polar caps indicating a strongly varying dust content of the ice due to varying climate conditions in the past. This study aims at simulating the dynamic and thermodynamic evolution of the north-polar cap (NPC) of Mars with the ice-sheet model SICOPOLIS. The boundary conditions of surface accumulation, ablation and temperature are derived directly from the solar-insolation history by applying the newly developed Mars Atmosphere-Ice Coupler MAIC. We consider steady-state scenarios under present climate conditions as well as transient scenarios over climatic cycles. It is found that the NPC is most likely not in steady state with the present climate. The topography of the NPC is mainly controlled by the history of the surface mass balance. Ice flow, which is of the order of 1 mma−1, plays only a minor role. In order to build up the present cap during the last five million years of relatively low obliquities, a present accumulation rate of ≥ 0.25 mm water equiv. a−1 is required. Computed basal temperatures are far below pressure melting for all simulations and all times.
Publisher en Elsevier
Date
    Issued2004-08
Language
  • eng
Resource Type journal article
Version Type AM
Identifier HDL http://hdl.handle.net/2115/32734
Relation
  • URI http://www.sciencedirect.com/science/journal/00320633
  • isVersionOf DOI https://doi.org/10.1016/j.pss.2004.03.007
Journal
    • PISSN 0032-0633
      • en Planetary and Space Science
      • Volume Number52 Issue Number9 Page Start775 Page End787
File
Oaidate 2023-07-26